OC-DECLARE: Discovering Object-Centric
Declarative Patterns with Synchronization

Aaron Kisters/® and Wil M.P. van der Aalst

Chair of Process and Data Science (PADS), RWTH Aachen University
{kuesters,wvdaalst}@pads.rwth-aachen.de

Abstract. Real-world processes involve objects of different types that
interact with each other, like customers, orders, and items. Accurately
representing and analyzing these processes requires object-centric pro-
cess mining techniques that do not force flattening processes to a single
perspective. Most of the object-centric modeling, conformance checking,
and discovery approaches presented so far capture little to no interac-
tion between objects and their control flow. However, object synchro-
nization is a fundamental necessity to depict such processes accurately.
For example, in an order management process, an order should always be
confirmed together with all the items it was placed with. In this paper,
we propose an object-centric extension to the traditional DECLARE
approach for imposing declarative process rules through a set of con-
straint template instantiations. Through the use of simple primitives,
our approach, OC-DECLARE, can express new types of object-centric
constraints. Moreover, the pattern-style representation allows also using
and interpreting OC-DECLARE constraints individually, e.g., in predic-
tion tasks. We provide a novel algorithm to automatically discover OC-
DECLARE constraints from noisy object-centric event logs, including
interactions between objects and synchronization behavior. We evaluate
the mining approach on four publicly available object-centric datasets,
including one real-life one, and identify patterns and constraints that
cannot be found using previous object-centric discovery approaches.

Keywords: Object-Centric - Process Mining - Declarative Process Mod-
els - Process Discovery - Conformance Checking.

1 Introduction

Traditionally, process discovery approaches assume a fixed case notion in their
input event data. The resulting process models are then interpreted for one case
at a time. However, real-life processes often involve multiple objects of differ-
ent types. As part of a paradigm shift towards object-centric process mining,
many process modeling approaches combining multiple object perspectives have
been proposed |1}[2}6,/8,[11,/12]. For some of them, there are also correspond-
ing discovery or conformance checking approaches [1}2}/68/12}15}21]. However,
most of them heavily underspecify object-centric processes. Many discovery ap-
proaches consider different object types in isolation during discovery, and simply

https://orcid.org/0009-0006-9195-5380
https://orcid.org/0000-0002-0955-6940

2 A. Kiisters and W.M.P. van der Aalst

merge them into a single model, without addressing synchronization between ob-
jects [1L[8/12].

In particular, the identities of objects are not tracked, and multiple objects of
one type cannot be distinguished. Thus, these approaches are fundamentally un-
able to include synchronization between objects, for example, an activity always
occurring for combinations of objects, based on explicit relationships between the
objects or prior occurrences in events [12]. To the best of our knowledge, no previ-
ously proposed object-centric discovery approach can discover different types of
synchronization behavior across objects and sets of objects. Our approach, OC-
DECLARE, inspired by the traditional DECLARE method [17], addresses this
gap using three simple concepts of object involvements (ALL, EACH, and ANY).
These three constructs are needed to address object multiplicity, i.e., that events
can be associated with multiple objects of one type. For example, ALL correlates
events based on all the involved objects of one type, while EACH builds one set
of correlated events for each involved object of that type, individually. In this
paper, we introduce OC-DECLARE as a process model and constraint language,
and additionally address conformance checking and discovery of OC-DECLARE
constraints. shows an OC-DECLARE model of an order management
process. For example, the edge between the activities Place Order and Confirm
Order specifies the following constraint: For all Place Order events e and every
order object associated with e, there has to be a Confirm Order event ¢’ after-
wards, involving the order, all the items associated with e, and one employee
assigned to a customer involved in e (through object relationships). Through
the OC-DECLARE discovery approach introduced in this paper, object-centric
constraints capturing object set interactions can automatically be mined from
data. For instance, given a corresponding object-centric event log as input, our
approach can automatically discover the aforementioned edge between Place
Order and Confirm Order.

OC-DECLARE is inspired by the classical DECLARE approach [17]. Declar-
ative process models, like DECLARE [17] or DCR graphs [13], describe a process

V order ALL() ANY(> X
Place Order Confirm Order
O
Payment
Reminder
Process

Payment

X

[s)

V order

Fig. 1. An OC-DECLARE model for an order management process. The model con-
tains seven individual constraints, specified by arcs between activities. Arcs are anno-
tated with object types and their involvement mode, either EacH (V), ALL, or ANY.

OC-DECLARE: Discovering Object-Centric Declarative Patterns 3

/e \(2) /T\(C)
Place Order ;rocesst :ayrpznt
(b) aymen () eminder

Fig. 2. A simple DECLARE model imposing the following constraints: (a) Place Order
happens initially (b) when Place Order occurs, Process Payment always happens af-
terwards (c) Process Payment happens exactly once, and (d) when Payment Reminder
occurs, Process Payment must not have occurred before.

in terms of constraints that forbid certain behavior, instead of describing all pos-
sible allowed behavior. As such, declarative process models can express loosely
structured processes more easily. shows an example DECLARE model,
including a subset of the constraints imposed by the OC-DECLARE model from
for the object type order. In DECLARE, binary constraints (i.e., in-
volving two activities) are modeled as arcs between the corresponding activity
nodes, while unary constraints are annotated on the top of the activity node.
DECLARE constraints can also be represented using textual templates. For ex-
ample, in [Figure 2] (a) can be written as INIT(Place Order).

OC-DECLARE is an object-centric extension of the traditional DECLARE,
that allows modeling constraints involving multiple object types. To that end,
OC-DECLARE is not limited to simply combining DECLARE constructs across
object types, but can also capture interactions between them and handle events
associated with multiple objects. Meanwhile, the approach is still fundamen-
tally simple, with models only consisting of annotated arcs between activities.
This also enables using constraints individually in isolation using text-based
templates. For instance, classification or pattern detection techniques like [19],
building on top of the traditional DECLARE, could be extended to an object-
centric setting using OC-DECLARE. Apart from introducing OC-DECLARE,
we also present how existence-based OC-DECLARE constraints can be automat-
ically discovered. Through defining a preference relation, our discovery approach
discovers the set of maximal existence constraints. Moreover, certain uninterest-
ing constraints, for example, based on resource-like object types, can be filtered
out automatically.

This paper is organized as follows. We first discuss related work in
Next, in we recall object-centric event logs. We then introduce the
syntax of OC-DECLARE in together with their semantics and the
conformance checking of constraints. Next, we introduce our discovery approach
for OC-DECLARE constraints in We present the results of our exper-

imental evaluation in before we conclude this paper in

2 Related Work

In this section, we provide an overview of object-centric process models, as well
as their conformance checking and discovery approaches. Afterwards, we discuss
the current state of object-centric discovery, highlighting shortcomings.

4 A. Kiisters and W.M.P. van der Aalst

There are a few approaches for object-centric process models |1}2}/6,(8l/11,[12].
Automatic discovery has been addressed for |1}26,|8], based on input object-
centric event data [6,[8,9,21]. For [1,2l|12] there are conformance-checking ap-
proaches [2,/12,|15]. In the following, we briefly describe object-centric process
models for which discovery or conformance checking has been addressed.

Object-Centric Petri Nets (OCPN), introduced in |1], extend traditional Petri
nets by coloring places and tokens with an object type. To model activities in-
volving multiple objects of a type, variable arcs are introduced, which allow pro-
ducing or consuming an arbitrary number of tokens. No guards or limitations
on the combination of tokens consumed by transitions are imposed. The authors
also present a discovery approach, discovering Petri nets for each object type
separately and then merging them together |1]. Moreover, there is an alignment-
based conformance checking approach for object-centric Petri nets [15]. In [9], the
authors describe how to detect silent objects, corresponding to common object
combinations across activity executions, that can be integrated in OCPN-like
models. However, the approach does not differentiate between different object
involvement patterns. Furthermore, the approach constructs the smallest combi-
nations of object types that uniquely identify events, instead of discovering the
most precise synchronizations, following an inverse procedure to our approach.
Based on prior work, adding identifiers to Petri nets [20], Object-centric Petri
nets with IDentifiers (OPID) have been introduced in [12]|. Notably, OPIDs allow
specific synchronization of tokens corresponding to a combination of object in-
stances and object instance sets. The synchronization is, however, only based on
subset and not exact synchronization (e.g., that all items confirmed for an order
were also involved in its placement, but not the other way around). However,
exact synchronization, while not expressible in OPIDs directly, can be enforced
when calculating alignments under the assumption that remaining object tokens
could not proceed and complete without an exact synchronization [12].

Object-Centric Process Trees (OCPT) were introduced in [§|, annotating each
leaf node of a process tree with the involved object types and a set of relations.
The authors also sketch a discovery technique based on discovering a traditional
process tree from a pre-processed directly-follows graph. Synchronization is not
addressed in the modeling or discovery approach, and each object is considered
independently per executed tree node.

Object-Centric Behavioral Constraints (OCBC) models combine behavioral
constraints, inspired by DECLARE [17], with object modeling techniques, simi-
lar to ER or UML [2}|4]. As a result, OCBC models are made up of two submod-
els: A Behavioral Constraint Model with activities as nodes and a Class Model
with object types as nodes. Connections between both models are used to spec-
ify cardinality constraints and event correlation. Two types of behavioral event
correlations are possible: Directly through a common object type or indirectly,
through a relation between two object types. This coupling between the behav-
ioral model and the class model means that the behavioral model can only be
interpreted in combination with the class model. Exact or subset synchronization
is not directly expressible in OCBC without additional restrictions, as behavioral

OC-DECLARE: Discovering Object-Centric Declarative Patterns 5

constraints are interpreted with ANY-involvement semantics (e.g., that after an
order was created, there is a pick item event with any of the order’s items). A
conformance relation between OCBC models and object-centric event logs was
presented in [2]. Additionally, a discovery approach has been developed [21], also
handling infrequent behavior.

Object-Centric DCR graphs (OC-DCR) extend DCR graphs with constructs
related to object instance spawning, as well as flat 1:n and m:n synchronization
between all objects of specified object types [6]. In particular, OC-DCR graphs
are interpreted in the context of a set of objects, with each object instance having
its own subgraph. The authors also present a discovery method for OC-DCR
graphs based on a traditional DCR discovery algorithm [6].

In summary, most of the object-centric discovery approaches do not con-
sider synchronization and advanced interactions or relationships between ob-
jects. While OCBC can express constraints spanning multiple object types us-
ing object-to-object relationships, synchronization is not fully addressed in the
models and discovery [21]. In particular, fundamentally OCBC only considers
behavioral constraints with ANY-semantics and does not explicitly handle ob-
ject multiplicity, i.e., events involving multiple objects of one type [21]. Still, in
combination with other restrictions, e.g., that an activity can only occur once
for an object, subset and exact synchronization can be modeled by combining
behavioral and class-level constructs. In OC-DCR, object multiplicity is also not
addressed [6]. However, the approach allows for one-to-many and many-to-many
synchronizations that are interpreted between all instances of specified object
types, which requires interpreting models in the context of a clear object set or
hierarchy [6]. As such, the approach assumes hierarchical object types, forming
an implicit case notion. In general, there is not always such a hierarchical case
notion in object-centric event data.

Overall, none of these object-centric discovery approaches fully handle object
multiplicity and the resulting synchronization across multiple object sets.

3 Preliminaries

In this section, we introduce object-centric event logs and related notations used
throughout this paper. We begin by introducing the types of entities we consider.

Definition 1. We use the following pairwise disjoint universes:

- & Universe of events (e.g., e1)
-0 Universe of objects (e.g., 01)
- E&T Universe of event types (i.e., activities) (e.g., Confirm Order)
— OT Universe of object types (e.g., order)
- T Universe of timestamps (e.g., 25.11.19 13:00)

Next, we introduce Object-Centric Event Logs (OCEL). An OCEL consists of
a set of objects and a set of events with specified types. There can be relationships
between events and objects (E20) as well as objects and objects (020). The
presented formalization corresponds to a subset of the OCEL 2.0 specification [5].

6 A. Kiisters and W.M.P. van der Aalst

Table 1. An example OCEL of an order management process, containing the following
object types and objects: customer (01), order (02,010), item (03, 04,05, 011,012), and
employee (0g,07,08,09). On the left, the events, their event types (activities), times-
tamps, and E20 relations are shown. The object instances are colored according to
their type. The table on the right shows the O20 relationships of objects.

Event Activity Timestamp E20 Objects Object O20 Objects
e1 Place Order 01.01.25 10:00 {01, 02, 03,04, 05} 01 {06, 07}
es Confirm Order 01.01.25 13:00 {02, 03, 04, 05, 06, 07} 09 {o1}
es Pick Item 01.01.25 16:00 {03,08} 03 {02}
€4 Pick Item 02.01.25 09:00 {04,00} 04 {02}
€5 Pick Item 02.01.25 12:00 {()“,, ()g)} 05 {()2}
€6 Place Order 02.01.25 16:00 {()1, 010,011, ()|-_)} 010 {Ul}
er Confirm Order 02.01.25 18:00 {01, 010,011, 012,06} 011 {010}
es Process Payment 03.01.25 12:00 {01,02,07} 012 {010}

Definition 2. Object-Centric Event Logs (OCEL) can be described as a tuple
L = (E,O, R, type, time) of the following components:

— FEvents E C &, a set of events.

— Objects O C O, a set of objects.

— Relations R C (E x O)U (0 x O), E20 and 020 relationships

— Type Assignments, type: EUO — ET U OT, assigning types to events
and objects, such that V.cp type(e) € ET and Voco type(e) € OT

— FEvent Times, time: E — T, assigning unique timestamps to each event.
In particular, we assume that time is injective, totally ordering events.

shows an example OCEL of an order management process involving
the object types customer, order, item, and employee.

Definition 3. We introduce notational shorthands for important properties in
the context of an OCEL L = (E, O, R, type, time):

— E;, = F, for the events of L

— Op = O, for the objects of L

— Ry, = R, for the event-to-object and object-to-object relations in L

— type; = type, for the event and object types

— timey, = time, for the event timestamps

— E¢' ={e € E | type(e) = et}, for the events of type et in L

09" = {o € O | type(o) = ot}, for the objects of type ot in L

— objr(z) ={o€ O] (x,0) € R}, for the objects related to an x € EUO

Apart from direct associations of events and objects, we also want to handle
indirect associations through O20 relationships. For example, through an 020
relationship, the Pick Item event es from could be linked not only to
the item o3, but also to the corresponding order object 0,. To achieve this,
we introduce a set of transitive object types OT* = OT U (OT x {>,<} x

OC-DECLARE: Discovering Object-Centric Declarative Patterns 7

OT), where < or > indicates the direction of the O20 relation. The previous
example can then be written as (item, >, order) € OT". For an OCEL L =
(E, O, R, type, time), we define 0bj9*(e) for any ot € OT " and e € Ey, as follows:

{0 € 0% | (e,0) € R}, if ot € OT
obj%(e) = { {0 € o9 | Eloeoztl (e,0) € RA (0,0') € R}, if ot = (oty,>,0t3)
{0 € 09" | Eloeoi“l (e,0) € RA(0',0) € R}, if ot = (ot1, <, 0ts)

Consider the example OCEL from For the object type ot = item,
obj?*(e1) = {03, 04,05 }. Similarly, for the transitive types ot’ = (item, >, order)
and o’ = (customer, <, order), obj? (e3) = {02} and 0bj?" (e1) = {02, 010}

4 OC-DECLARE

In this section, we introduce OC-DECLARE formally. As OC-DECLARE does
not rely on a case notion, that partitions events into unique sets, event correlation
needs to be approached differently. To this end, we define multiple types of event
filters, functions that take a set of events and return a subset of the input set.

FEvent Filters We start by introducing event filters based on activities.

Definition 4. Given an OCEL L, an input set of events E C FEr,, and an event
type et € ET, we define filtersy"(E) = {e € E | type, (e) = et}.

For example, considering L from [Table 1} filtersor 1. .(EL) = {es, eq,es5}.
Next we specify two types of event filters for a given set of objects O, that keep
events if they involve all the objects in O (ALL), or at least one of them (ANY).

Definition 5. Let L be an OCEL. Given a set of objects O C Oy, the filter
functions filtery"(E) = {e € E | O C objL(e)} and filter,”" (E) = {e € E |
O Nobjr(e) # 0} are defined for an input set of events E C E,. Given a set
of object sets S C P(Or), we also write filtersg™(E) = (peg filtery™(E) and
filters™ (E) = Npeg filtery ™ (E) for the intersection across all contained sets.

For example, with L from and O = {03,04,05}, filtery"(EL) = {e1, e2}.
Similarly, for S = {{03, 04,05}, {06,00}}, filters™ (EL) = {ea,e4,€5}.

To model temporal relations, we introduce a set of arrow types, Arrows,
inspired by the classical DECLARE [17]. Arrows contains the following elements:

— @— Associated with (AS), responded-existence in DECLARE
— @ Eventually followed by (EF), response in DECLARE

— @« Eventually preceded by (EP), precedence in DECLARE

— @ Directly followed by (DF), chain response in DECLARE

— @¢— Directly preceded by (DP), chain precedence in DECLARE

Using arrow types, events can be filtered regarding a reference timestamp. Other
DECLARE arrow types (e.g., alternate-precedence) could also be integrated.

8 A. Kiisters and W.M.P. van der Aalst

Definition 6. Let L be an OCEL. We write ts(e) = timer(e) as a shorthand.
For a reference timestamp t € T, and an arrow type ar € Arrows the following
time-based filter function is defined for an input set of events E C Ey :

E, if ar = @—
{e € E | ts(e) > t}, if ar = &—>
filtery g (E) = { {e € E | ts(e) < t}, if ar = @e—
{ec E|ts(e) >t NPucp ts(e) > ts(e/) > t}, if ar = o
{ec E|ts(e) <tAPoecp ts(e) < ts(e’) < t}, if ar = @e—

For example, given the OCEL L from t = 02.01.25 16:00, and ar =
o>, filter, ,.(Er) = {e7,es}. With ar’ = @, filter, ,,.(Er) = {ez}.

Notice that the composition of all filter function types, except filter, ,,.", are
commutative. This is because filter; 'y, can filter events based on directly-follows

or directly-precedes relationships of the input event set.

TIME

Syntar We can next define the syntax of OC-DECLARE constraints formally.
Constraints are arcs between activity nodes. Each arc has one source activity
and one target activity. As an extension to standard DECLARE [17], each arc
also specifies upper (nmq,) and lower (n,,4,) bounds on how many matching
events of the target activity should exist.

Definition 7. A tuple (ar, s,t, 0t, Nmin, Mmaz) s an OC-DECLARE constraint
consisting of:

— An arrow type ar € Arrows

— A source activity s € A

— A target activity t € A

— A partial object involvement function oi: OT* /4 {EAcH, ALL, ANY}

— Mmin € I\IO

— Nunaz € No U {00}, where oo represents that there is no mazimum value

Additionally, we write Fachy; = {ot € dom(oi) | oi(ot) = EacH}, All,; = {ot €
dom(oi) | oi(ot) = ALL}, and Any,; = {ot € dom(oi) | oi(ot) = ANY}.

Intuitively, the object involvements allow specifying the following conditions for
an object type ot and a reference event e: (EACH) For each ot object o involved
in e, the specified number of target events involving o should occur. (ALL) For
all ot objects O involved in e, the specified number of target events involving
all of O should occur. (ANY) For all ot objects O involved in e, the specified
number of target events involving at least one of O should occur.

If in a given OCEL L, all events of the source activity s are only ever associ-
ated with at most one object of a specified object type, the object involvements
EACH, ALL, and ANY are equivalent for this object type.

Before we define the semantics of constraints formally, we first present two
examples. Consider an OC-DECLARE constraint D = (ar, s, t, 0%, Nnin, "maz)

OC-DECLARE: Discovering Object-Centric Declarative Patterns 9

with ar = @, s = Place Order, t = Confirm Order, Fach,; = {order},
All,; = {iten}, Any,; = {(customer, >, employee)}, Nmin = 1, and nyqe, = 0.
D is shown graphically in where a filled circle indicates the source
activity. Intuitively, D expresses that for every Place Order event e there should
be (at least) one Confirm Order event e’ afterwards for each order in e, such
that e’ involves the order, all the items in e, and (at least) one of the employee
objects assigned to the customer in e (through an 020 relationship).

V order ALL() ANY(>)
7

Place Order Confirm Order

w

Fig. 3. An OC-DECLARE constraint arc between Place Order and Confirm Order.

As a second example, consider D’ = (ar, s, t, 0, Nnin, Nmaz) With ar = @¢—,
s = Process Payment, t = Pick Item, Fach,; = {(order,<,item)}, All,; =
{}, Any,; = {employee}, nmin = 1, and ny,q. = c0. D’ is shown graphically in
Intuitively, D’ expresses that for every event of type Process Payment
e there should be at least one event Pick Item e’ before e for each of the items
related to the order in e (through O20 relationships), such that e’ involves the
corresponding item, and at least one of the employee objects involved with e.
Note, that by using EACH object involvement instead of ALL, D’ specifies that
there has to be one event for each item individually, but not necessarily one
event involving all of them together.

Process ANY()

Payment Pick Item

Fig.4. An OC-DECLARE constraint arc between Process Payment and Pick Item.

Similar to traditional DECLARE, OC-DECLARE constraints can also be
represented in text-based syntax. For example, EF (Place Order, Confirm Order,
Each(order), All(item), Any(customer>employee),1,00) represents D. The arc
D’ can be represented as EP(Process Payment, Pick Item, Each(order<item),
Any (employee),1,00).

While there is no clear definition of subset and exact synchronization con-
cepts for declarative models, OC-DECLARE can express common subset and ex-
act synchronization patterns using ALL. For example, EP(Confirm Order, Place
Order, Each(order), All(item),1,00) specifies that for Confirm Order events e
there must be a Place Order event for the order involving at least all the items
in e and possibly more. For exact synchronization, a second constraint in the
reverse direction can be considered in addition, effectively enforcing that there

10 A. Kiisters and W.M.P. van der Aalst

is a “synchronized” event pair of specified types with the same set of objects for
that type. By design, subset synchronization in OC-DECLARE is based on the
source activity, as only events of the source activity actually impose constraints.

Semantics and Conformance Checking Next, we introduce the semantics of OC-
DECLARE constraints. In particular, in the context of an OCEL L, we define
when a given event e € E, satisfies the constraint.

Definition 8. Let D = (ar, s,t, 0i, Nmin, Mmaz) be an OC-DECLARE constraint
with Eachy; = {ot1,...,o0t,}. In the context of an OCEL L, we define when an
event e € E3 satisfies D (written as e =, D):

€):L D & v01€0bjzt1 (e),..., DnEObjzt" (e) Nimin < ‘f(EL)l < Nimaz

where f = filtery“" o filteryime (¢).ar © filter(oy, o 3

ALL ANY
o ﬁlt@’l"{objzf(eﬂote/llloi} o ﬁlter{objzt (e)|ote Any,; }

For events of different activities ' € Er, \ E3, we say that D trivially holds
and also write ¢’ =1, D.

Considering the previously introduced example OC-DECLARE constraints
D (Figure 3) and D’ (Figure 4) and the example OCEL L from [Table 1} we can
conclude that ey =1 D, eg =1, D, but eg [~ D', as there is no corresponding
pick item event for each item of the order, involving at least one employee
also present in eg.

The semantics defined in [Definition § describe when an event satisfies an OC-
DECLARE constraint. Through this per-event interpretation, confidence scores
of OC-DECLARE arcs for a complete input OCEL can be calculated.

Definition 9. For an OCEL L and an OC-DECLARE constraint D = (ar, s, t,
Oly Nmin, Mmaz), the confidence of D in L is conf (D) = % € [0,1]
L

The conformance value is 1 exactly when all events of the source activity sat-
isfy the constraint, and 0 exactly when no event satisfies the constraint. A global
confidence score for a set of OC-DECLARE constraints DS can be given by the
fraction of events that fulfill all constraints: gconf , (DS) = 1€z ‘vlljgfls LD}
The language of an OC-DECLARE model (i.e., a set of OC-DECLARE con-
straints) DS is then simply the set of all OCELs L with gconf ;(DS) = 1.

More fine-grained diagnostics are also possible: For example, a constraint
with item as EACH might be violated for a confirm order event e if it is not
followed by a pick item event for only one of the items associated with e. As
advanced diagnostics, the item object which was not picked can be identified.

Including Object Constraints So far, we focused only on constraints based on
correlation of events. However, the classical DECLARE [17] as well as more
recent approaches like OCBC [2] also allow modeling other constraints. We dif-
ferentiate three subtypes: (1) Event cardinality constraints, specifying that at

OC-DECLARE: Discovering Object-Centric Declarative Patterns 11

o V order Process L ANY (item) Process
(a) h o . o e (b)
o v order) \y order Process
(C) =1 Place Order <exit> order +‘7ﬂ (d)
o ANY (order<item) o
(e) <init> order o <init> item

Fig. 5. Using artificially added init and exit events, the following constraints can be
expressed: (a) Every order is paid exactly once (b) Every order placement is associated
with 1-10 item (¢) Every order is placed initially (d) Every order ends by being paid
(e) Every order is associated with 1-10 items.

most or least n events of a specified activity occur per object. (2) Object car-
dinality constraints, specifying how many objects of one type can be associated
with an event or object of another type. (3) Initial/final activity constraints,
specifying the activity of the first or last event associated with an object. For
example, specifying that exactly one Process Payment event should happen for
each order is an event cardinality constraint. Specifying how many objects of
type item should be involved in a Place Order event is an object cardinality
constraint. Prescribing that every order object should at first be involved in a
Place Order event is an initial/final activity constraint.

Integrating these types of constraints into OC-DECLARE is achieved using
an implicit OCEL pre-processing step: Given an input OCEL L, the transformed
OCEL L' is an extension of L, retaining all its events and objects with the
same types, the same timestamps, and all relations. Additionally, for each object
o € O, with type type; (o) = T, two new events e, and e?,;, are included in
B, with (€9,:;,0), (€2,i1,0) € Rir, typer(€5,,) = <init> T, typey, (2,;) =
<exit> T, timer:(e2,,,) = min{timer(f) | f € EL Ao € obj.(f)} — ¢, and
timer: (€2,,,) = max{timer(f) | f € Er No € obj.(f)} + ¢, where £ > 0 can be
arbitrarily small. These events correspond to the creation (init) and end (exit)
of the object o. shows how these artificial events can be used with @—,
@, and @¢— to express the three aforementioned constraint types.

While this lightweight extension allows modeling additional types of con-
straints, they are not required for the general OC-DECLARE approach as pre-
sented in this paper. For conformance checking and discovery, this pre-processing
can simply be done beforehand for any input OCEL. For playing out or executing
OC-DECLARE models, the artificial activities need to be considered according
to their semantics (i.e., occurring before/after the first/last real event involving
this object), but are afterwards removed from the output log.

Counts and Negated Constraints By allowing general n,,;n, and n,q,. count lim-
its for OC-DECLARE constraints, the negations of constraints can also triv-
ially be represented. We consider ezistence constraints as all constraints with

12 A. Kiisters and W.M.P. van der Aalst

Nmin = 1 and Ny,e; = 00. Independent of the arrow type, the negation of an
existence constraint has all the same components but instead the count limits
Nmin = 0 and Ny, = 0. For example, the traditional DECLARE constraint
NOTRESPONSE(s,t) can be represented with the normal response arrow type
(@) and nymin = Nmax = 0.

5 Discovery

In this section, we describe how existence OC-DECLARE constraints (i.e.,
with counts n,,;, = 1 and N, = 00) can be automatically discovered from
object-centric event logs with noise. A similar but inverse approach can also be
developed for the negation of such constraints. Moreover, object constraints, can
be discovered analogously to existing techniques (e.g., [21]).

For declarative models, discovery can often easily be implemented as a brute-
force approach, starting from a fully constrained model, as done in |16] or 7]. A
brute-force approach can also be used for OC-DECLARE, however as object
types add significantly more possible instantiations of constraints, this might
prove challenging in practice. Declarative discovery techniques often produce a
huge number of constraints, making the resulting model overly complex [18].

To mitigate the problem of superfluous constraints and to enable fast dis-
covery, we specify a subset of preferred constraints that should be automatically
discovered. We can further distinguish between constraints being directly implied
by others (i.e., implied) or simply defined as being preferred over others.

We start by noting observations on implied OC-DECLARE constraints in
(based on the arrow type) and (based on object types): An
OC-DECLARE existence constraint with an arrow type ar # @— always implies
at least one other constraint. For example, if ar = @, the same constraint
with @— is implied because it imposes less strict filters on the target events.
Intuitively, if there is at least one target event occurring afterwards (@), there
also is one target event occurring before or after (@—).

Lemma 1. Let L be an OCEL and let D = (ar, s,t,0i,1,00) and D' = (ar’, s,t,
0i,1,00) be two OC-DECLARE constraints. Then, the implication e =r, D =
e =L D' holds for the following combinations of ar and ar’: (1) ar # @— and
ar' = @—, (2) ar = @ and ar’ = @, or (3) ar = @&— and ar’ = @¢—.

Furthermore, for a given arrow type ar € {@—, @ @&} stricter object in-
volvements always lead to stricter target event filters and can only reduce the
number of target events. Thus, for any given existence constraint, the same con-
straint with more lax object involvement (e.g., subsets of ALL, EACH, ANY or an
object type in EACH instead of ALL) is directly implied by it.

Lemma 2. Consider an arrow type ar € {@—, @—> @e¢—}. Let L be an OCEL.
Then the following implications hold for all events e € E7 :

— If a constraint D = (ar, s,t,0i,1,00) holds for e, then all constraints D' =
(ar, s, t,0i’,1,00) with Alloy C Ally;, Eacheir C Fache;, and Any,; C Any,,;
also hold for e (i.e., el=p, D = e=r D).

OC-DECLARE: Discovering Object-Centric Declarative Patterns 13

— Let ot € OT*. If D = (ar, s,t,0i,1,00) with ot € Fach,; holds for e, then
D' = (ar,s,t,0i',1,00) with Allyy = Ally;, Eacheyr = Eachy; \ {ot}, and
Any . = Any,; U{ot} also holds for e (i.e., ez D =ep D).

— Let ot € OT*. If D = (ar,s,t,0i,1,00) with ot € All,; holds for e, then
D' = (ar,s,t,0i',1,00) with All,; = Ally; \ {ot}, Fachoy = Fachy; U {ot},
and Any,,. = Any,; also holds for e (i.e.,el= D =el= D).

Based on these observations, we define a preference relation between OC-
DECLARE constraints, determining which constraints to prefer over others:

Definition 10. Let D = (ar,s,t,0i,1,00) and D’ = (ar’,s',t’,0i’,1,00) be two
OC-DECLAREF constraints. We prefer D over D' (written as D' < D) if s = ¢,
t =1, Alloy C Ally;, Eachyy C Ally; U Eachy;, and Any,; C Ally; U Eachy; U
Any,;. When D < D' and D’ A D, we say that D is strictly preferred over D’
(D' < D). Moreover, if D < D' and D' < D, we still strictly prefer D over
D’ (i.e., D' < D) if either: (1) ar # ®— and ar’ = @&—, (2) ar = & and
ar’ = @, or (3) ar = @&— and ar’ = @¢—.

Put into words, for the same reference and target activity, constraints are
preferred if they have stricter object involvement requirements. Moreover, if
they impose the same object involvement requirements, as secondary criteria,
stricter event relationships (i.e., arrow types) are preferred.

Notice, that in contrast to [Lemma 1| and [Lemma 2| strict preference (<)
does not correspond to implied constraints. For example, an eventually-follows
constraint (@) is preferred over a directly-follows one (@) if the former has
a stricter object involvement, although the former does not imply the latter.

Leveraging the implications from a discovery algorithm for OC-
DECLARE constraints is outlined in It is inspired by the classical
Apriori algorithm [3], exploiting monotonicity properties of the OC-DECLARE
preference relation. Given a noise threshold 0 < p < 1 and an arrow type ar €
{@—, @ @<}, it discovers the preferred set of constraints of the given arrow
type for an OCEL L. The algorithm uses the following two subroutines:

— combine(arc,arc), combines two arcs with the same source activity, target
activity, and arrow type, by constructing the union of their object involve-
ments, preferring more strict ones over others (e.g., All over Each).

— reduce(Arcs), returns the subset of arcs not implied by others in the set

Given an OCEL L, let Cons}" be the set of all OC-DECLARE constraints
with arrow type ar € Arrows that contain only object and event types from L,
and involve at least one object type. For a noise threshold 0 < p < 1, the subset
of constraints with a confidence score of at least 1 — p is SatCons}* = {D €
Consy" | conf (D) > 1 — p}. Given an OCEL L, a noise threshold p, and an

arrow type ar € {@—, @ @<}, the |Algorithm 1] yields the maximal strictly
preferred set of constraints A = {D € SatCons} ™" | =3 prcgarconsere (D' # D A

D =< D’)}. Tt is easy to see, that|Algorithm 1|only yields constraints of the correct
arrow type that satisfy the confidence threshold. Additionally, per

14 A. Kiisters and W.M.P. van der Aalst

Algorithm 1 Behavioral OC-DECLARE Discovery

Input: OCEL L, noise threshold p, arrow type ar € {@—, @—» @¢—}
Output: Set of OC-DECLARE Arcs A

1: A+0

2: for s, t € ET with E] # 0 and Et # 0 do > Pair of activities present in L
3: X0

4 for ot € OT" with Jeeps obj?(e) # 0 do

5: arcy <+ (ar,s,t, {},{},{ot}, 1,00) > Try any
6: if conf(arci) > 1 — p then

7 X +— X U{arc1}

8 arcg « (ar, s, t,{ot}, {}, {},1,00) > Try each (only when any holds)
9: if conf(arce) > 1 — p then

10: X «+ X U{arca}

11: arcs < (ar, s, t,{}, {ot}, {},1,00) > Try all (only when each holds)
12: if conf(arc3) > 1 — p then

13: X + X U{arcs}

14: do > Construct and check arc combinations
15: Y+ 0

16: for arc,arc’ € X with arc # arc’ do

17: arc’” < combine(arc, arc’)

18: if arc’” ¢ X A conf(arc’’) > 1 — p then > Check arc combination
19: Y « Y U {arc"}

20: X« XUY

21: while Y # 0

22: A — AU reduce(X) > Add not-implied arcs to A
23: return A

the iterative combination of constraints constructs the maximal satisfied object
involvements for the input parameters.

In addition to the preferred sets of constraints of a single arrow type, [AL]
can also be used to discover the maximal strictly preferred (<) set
of constraints across all arrow types (i.e., @&—, @—» @¢— @ and @¢—), as
defined in[Definition 10} For that, the algorithm is executed once with ar = @&—,
and for each discovered constraint, versions with stricter arrows (i.e., @, @¢—,
@ and @) are checked and added, removing the less strict versions, as
per [Lemma 1} By [Definition 10} this post-processing yields the set B = {D €
SatCons|"" | ar,ar’ € Arrows A _ElD’eSatCons‘zr/'p (D' # DAD < D')}. Unin-

teresting constraints, for example, involving only resource-like object types (e.g.,
employee), can be removed by filtering the result of before testing
other arrow versions.

While the discovery of negative constraints is outside the scope of this paper,
intuitively, it corresponds to identifying minimal object involvements, as larger
object involvements lead to negative constraints becoming less strict, while ex-
istence constraints become stricter.

6 Evaluation

In this section, we evaluate our approach. First, we investigate the runtime of the
discovery algorithm and report the number of discovered constraints to evaluate
its feasibility. Next, we perform a qualitative analysis on the discovered con-
straints, showcasing constraints not expressible or discoverable in prior work.

OC-DECLARE: Discovering Object-Centric Declarative Patterns 15

Table 2. Properties and discovery results for the object-centric datasets.

Dataset Events Event Objects Object No 020 Direct 020
Types Types Duration Count Duration Count
Logistics 321 7 132 9 0.06s 99 3.69s 140
P2P 1234 13 1341 6 0.03s 32 2.12s 53
Order 34303 22 5231 8 3.28s 116 32.88s 192
BPIC2017 2043141 24 34412 3 139.96s 102 255.84s 174

Our implementation based on Rust4PM [14], featuring discovery, confor-
mance checking, and an interactive constraint editor, as well as our evaluation
setup and results are available at https://github.com/aarkue/ oc—DECLAREﬂ

We applied our discovery approach with a noise threshold of p = 0.2 to four
publicly available object-centric event logs: Three simulated datasetsE| and the
real-life BPIC2017 dataset of a loan application process, based on [10]. For each
dataset, the mean discovery runtime across 10 runs and the number of discovered
constraints are shown in together with general log properties. We ran
our discovery approach in two variants, No 020, i.e., without considering O20
relationships and Direct O20, i.e., also considering direct O20 relationships. We
did not consider both directions for 020, as this leads to a significant increase in
runtime. In our evaluation, we adapted for increased performance,
including parallelization, to discover association constraints. Results which would
not surpass the confidence threshold with a maximal event count of n,,., = 20
are removed to exclude undesirable entries (e.g., only based on resource-like
object types). Finally, for each remaining association constraints, stricter-arrow
versions are tested and added as described in Section 5l

Overall, the runtimes across all considered logs range from below 1 second
to slightly above 4 minutes, indicating the feasibility of our approach. Including
object-to-object relationships comes with additional costs in increased runtime,
as the number of possible arcs between activities increases significantly. Note
that our discovery approach considers object-multiplicity and synchronization,
and thus addresses a more complex problem than previously proposed object-
centric discovery algorithms. Moreover, the number of discovered constraints is
reasonable, not surpassing 200 for any tested log.

In [Figure 6] we include some of the discovered constraints, inspired by the
initial OC-DECLARE example from[Figure 1] Notably, none of the constraints in
can be expressed or discovered in prior work, as they combine multiple
object involvements using ANY, EACH, and ALL. The discovered constraints
demonstrate that our approach is indeed capable of discovering interesting and
understandable constraints, including advanced synchronization behavior. For
example, the discovered arc between send package and package delivered
specifies that a package should be delivered after sending it, together with all
the items and products, and by one of the employees who sent it.

! Version referenced: https://doi.org/10.5281/zenodo . 156554279.
2 Three simulated logs from https://ocel-standard.org/event-logs/overview/.

https://github.com/aarkue/oc-DECLARE
https://doi.org/10.5281/zenodo.15554279
https://ocel-standard.org/event-logs/overview/

16 A. Kiisters and W.M.P. van der Aalst

place order Q) confirm order
O

ALL (items, products)
z1

]7/{9,,7 s

ts)

ALL(items, products)

grets

onpoid ‘sway A

payment Y items ANY (products) package =1 packages)
reminder =1 delivered ALL (items, products) ANY()

Case_R, A
A_Cancelled © — - O_Cancelled

Fig. 6. On the top, a selection of discovered OC-DECLARE constraints for the Order
OCEL without O20 relationships are shown. On the bottom, a single discovered con-
straint for the BPIC2017 OCEL with O20 relationships is included.

send package

7 Conclusion

In this paper, we proposed three main contributions: First, we introduced an
object-centric extension of the traditional DECLARE method. By modeling
constraints as arcs between activities, a broad usage of OC-DECLARE con-
straint templates in other methods is possible. While keeping the basic concept
rather simple, OC-DECLARE is still more expressive than previous (declara-
tive) object-centric models. In particular, through differentiating three different
types of object involvement (EACH, ALL, and ANY), OC-DECLARE can also
handle object-multiplicity and supports object set synchronization. As a second
contribution, we introduced a conformance-checking approach yielding a viola-
tion percentage. Moreover, we presented a discovery approach for an important
subset of OC-DECLARE constraints, yielding a set of maximal existence con-
straints that are of particular interest. We evaluated our discovery approach on
four publicly available object-centric datasets, including one real-life one. The
results indicate that our discovery approach is feasible in terms of runtime and
can indeed discover novel interesting and relevant constraints.

In future work, applications of OC-DECLARE constraints, e.g., to find in-
dicating patterns for undesirable behavior or discover synchronization for other
process models, should be investigated. Moreover, an underpinning in a formal
logic could enable automatic reasoning over constraints. Lastly, a more sophis-
ticated conformance checking approach, also quantifying partial mismatches of
object sets, is of particular interest.

Acknowledgments. The authors gratefully acknowledge the German Federal Min-
istry of Education and Research (BMBF) and the state government of North Rhine-
Westphalia for supporting this work as part of the NHR funding.

OC-DECLARE: Discovering Object-Centric Declarative Patterns 17

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

van der Aalst, W.M.P., Berti, A.: Discovering Object-centric Petri Nets. Fundam.
Informaticae 175(1-4), 1-40 (2020)

van der Aalst, W.M.P., Li, G., Montali, M.: Object-Centric Behavioral Constraints.
CoRR (2017)

Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: VLDB. pp. 487-499. Morgan Kaufmann (1994)

Artale, A., Kovtunova, A., Montali, M., van der Aalst, W.M.P.: Modeling and
Reasoning over Declarative Data-Aware Processes with Object-Centric Behavioral
Constraints. In: BPM. LNCS, vol. 11675, pp. 139-156. Springer (2019)

Berti, A., Koren, I., Adams, J.N., Park, G., Knopp, B., Graves, N., Rafiei, M., Lif,
L., genannt Unterberg, L.T., Zhang, Y., Schwanen, C.T., Pegoraro, M., van der
Aalst, W.M.P.: OCEL (Object-Centric Event Log) 2.0 Specification. CoRR. (2024)
Christfort, A.K.F., Rivkin, A., Fahland, D., Hildebrandt, T.T., Slaats, T.: Discov-
ery of Object-Centric Declarative Models. In: ICPM. pp. 121-128. IEEE (2024)
Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative process min-
ing for DCR graphs. In: SAC. pp. 759-764. ACM (2017)

van Detten, J.N., Schumacher, P., Leemans, S.J.J.: Discovering Compact, Live and
Identifier-Sound Object-Centric Process Models. In: ICPM. pp. 113-120. IEEE
2024)

E/an Detten, J.N., Schumacher, P., Leemans, S.J.J.: Object Synchronizations and
Specializations with Silent Objects in Object-Centric Petri Nets. In: BPM. LNCS,
vol. 14940, pp. 57-74. Springer (2024)

van Dongen, B.: BPI Challenge 2017 (2017), https://data.4tu.nl/articles/
dataset/BPI_Challenge_2017/12696884/1

Fahland, D.: Describing Behavior of Processes with Many-to-Many Interactions.
In: Petri Nets. LNCS, vol. 11522, pp. 3—24. Springer (2019)

Gianola, A., Montali, M., Winkler, S.: Object-Centric Conformance Alignments
with Synchronization. In: CAiSE. LNCS, vol. 14663, pp. 3-19. Springer (2024)
Hildebrandt, T.T., Mukkamala, R.R.: Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. In: PLACES. EPTCS, vol. 69, pp.
59-73 (2010)

Kiisters, A., van der Aalst, W.M.P.: Rust4PM: A Versatile Process Mining Library
for When Performance Matters. In: BPM Demos. vol. 3758, pp. 91-95. CEUR-
WS.org (2024)

Liss, L., Adams, J.N., van der Aalst, W.M.P.: Object-Centric Alignments. In: ER.
LNCS, vol. 14320, pp. 201-219. Springer (2023)

Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: CIDM. pp. 192-199. IEEE (2011)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: EDOC. pp. 287-300. IEEE (2007)

Slaats, T.: Declarative and Hybrid Process Discovery: Recent Advances and Open
Challenges. J. Data Semant. 9(1), 3-20 (2020)

Smedt, J.D., Deeva, G., Weerdt, J.D.: Mining Behavioral Sequence Constraints for
Classification. IEEE Trans. Knowl. Data Eng. 32(6), 1130-1142 (2020)

van der Werf, J.M.E.M., Rivkin, A., Polyvyanyy, A., Montali, M.: Data and Process
Resonance - Identifier Soundness for Models of Information Systems. In: Petri Nets.
LNCS, vol. 13288, pp. 369-392. Springer (2022)

Xiu, B., Li, G., Li, Y.: Discovery of Object-Centric Behavioral Constraint Models
With Noise. IEEE Access 10, 88769-88786 (2022)

https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1

	OC-DECLARE: Discovering Object-Centric Declarative Patterns with Synchronization
	Introduction
	Related Work
	Preliminaries
	OC-DECLARE
	Discovery
	Evaluation
	Conclusion

