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Abstract. Process querying is used to extract information and insights
from process execution data. Similarly, process constraints can be checked
against input data, yielding information on which process instances vio-
late them. Traditionally, such process mining techniques use case-centric
event data as input. However, with the uptake of Object-Centric Process
Mining (OCPM), existing querying and constraint checking techniques
are no longer applicable. Object-Centric Event Data (OCED) removes
the requirement to pick a single case notion (i.e., requiring that events be-
long to exactly one case) and can thus represent many real-life processes
much more accurately. In this paper, we present a novel highly-expressive
approach for object-centric process querying, called OCPQ. It supports
a wide variety of applications, including OCED-based constraint check-
ing and filtering. The visual representation of nested queries in OCPQ
allows users to intuitively read and create queries and constraints. We
implemented our approach using (1) a high-performance execution en-
gine backend and (2) an easy-to-use editor frontend. Additionally, we
evaluated our approach on a real-life dataset, showing the lack in ex-
pressiveness of prior work and runtime performance significantly better
than the general querying solutions SQLite and Neo4j, as well as com-
parable to the performance-focused DuckDB.

Keywords: Object-Centric Process Mining · Querying · Constraints.

1 Introduction

In organizations, process execution data contain valuable insights that are often
not leveraged to their full extent. The domain of process querying is concerned
with methods and techniques for extracting such insights from event data. For
example, given data of an order management process, a simple query for inter-
esting cases could be formulated in natural language as “Find all cases where
pay order is executed more than once”. Process querying of execution data also
has a strong correspondence to process constraints: Identifying violations of a
process constraint, e.g., “pay order should be executed exactly once per case”,
corresponds to querying its violations (i.e., a query with the negated constraint).

To promote using this opportunity of gaining insights, it is important to allow
stakeholders to query interesting scenarios in their processes themselves. For that
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reason, graphical notations for constraints or queries are often introduced, as a
way to also allow stakeholders without programming experience to utilize them.
Similarly, there are also graphical declarative process models, like DECLARE [6],
in which visual models describe an underlying set of constraint rules.

More recently, process querying and constraint approaches based on Object-
Centric Event Data (OCED) have been proposed [2,3,4]. OCED no longer as-
sumes a single case notion in data, i.e., that events belong to exactly one defined
case. Instead, OCED contains a set of objects and a set of events of specified
types. OCED also allows for relationships between objects and events, as well
as between objects and objects. As such, OCED can represent many real-life
processes much more accurately than traditional, flat event logs. For example,
in an order management process, the different objects interacting in the process
could include customers, orders, items, packages, and employees. Therefore,
classical case-centric approaches, which assign one object per event, are too
limiting [1]. These advantages of OCED translate directly to process querying
techniques based on OCED. In particular, a more accurate and interconnected
representation of the underlying real-life process can be queried, instead of only
a flat representation that could lead to inaccurate results or misleading conclu-
sions.

In this paper, we present an object-centric nested querying approach with an
accompanying full graphical tool implementation, focusing on high expressive-
ness, fast runtime performance, and easy usability. An overview of the approach,
including inputs and outputs, is shown in Figure 1. First, stakeholders design
queries or constraints, optionally based on some regulation or specification docu-
ment. The created queries can then be evaluated based on input OCED, yielding
query results. The query results are visually shown in aggregation (e.g., with the
total number of results or the percentage of violating instances) but can also be
explored in the tool individually or exported (e.g., to a CSV or XLSX file).

Design

Query /
Constraints

Query Results
(e.g., Instances

violating a
constraint)

OCED

Execute /
Check

Fig. 1. Overview of the object-centric process querying and constraint approach.

Consider the following example of an object-centric constraint for an order
management process: “If a third payment reminder for an order is sent to a
customer, no (other) order by this customer should be confirmed afterwards”.
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What at first seems to be a rather simple rule actually involves multiple different
object and event types, as well as multiple instances of the same object type (i.e.,
multiple order objects). In fact, to the best of our knowledge, none of the so far
proposed graphical process querying or constraint techniques can express such
a rule. Even in all-purpose querying languages, like SQL or Cypher, expressing
such a rule is not only unapproachable for people without programming skills,
but also largely impractical for larger data because of their poor performance
for such types of queries.

We fill this gap by introducing OCPQ, an object-centric process querying
approach, that leverages the full flexibility of the OCED data model, while fo-
cusing on easy, visual usability and a very fast runtime performance. We also
present a full graphical tool implementation of the approach, which is publicly
available at https://github.com/aarkue/ocpq. In contrast to related work,
OCPQ can also express advanced queries and constraints spanning multiple ob-
ject and event types while still allowing for easy visual modeling. For instance,
the previously introduced example can be modeled visually as a nested query
constraint in OCPQ, as shown in Figure 2.

If a third payment reminder for an order

is sent to a customer, no (other) order

by this customer should be confirmed

afterwards

Fig. 2. The mapping of an example constraint in natural language to a visual nested
query constraint in OCPQ. The included arrows indicate how objects or events men-
tioned in the textual description are modeled in the visual constraint.

In our tool implementation, nested queries are evaluated through a recursive,
parallelizable algorithm, achieving good runtime performance and demonstrating
the feasibility of our approach, even for larger, real-life datasets.

The remainder of this paper is structured as follows. In Section 2, we first
discuss related work. Next, we introduce preliminaries in Section 3. Section 4
describes the main concepts of our approach. Our tool implementation is covered
in Section 5, followed by an evaluation of the expressiveness and runtime in
Section 6. Finally, we conclude this paper in Section 7.

https://github.com/aarkue/ocpq
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2 Related Work

In this section, we present related work on process querying, process constraints
and declarative process models.

Process querying research covers filtering and manipulation of process repos-
itories, which can contain process models as well as process executions (i.e.,
event data), based on a (formal) query. In this paper, we focus on querying of
event data without corresponding process models. In [5], the authors describe
the Process Instance Query Language (PIQL), which allows querying the num-
ber of cases or events fulfilling specified criteria. The proprietary Celonis Process
Querying Language (Celonis PQL) introduced in [12] is another domain-specific
process querying language heavily inspired by SQL. Through the integration of
Celonis PQL with the underlying data model schema, table joins do not need
to be specified explicitly, as would be the case with JOIN statements in SQL.
All the previously mentioned process querying research is primarily focused on
traditional, flat event data. However, in [3], Esser et al. describe storing multi-
dimensional (i.e., object-centric) event data in graph databases and using the
universal graph querying language Cypher of the Neo4j database system to query
entities or subgraphs.

Apart from querying, process constraints as well as declarative process models
are also important related fields for this paper. Both of these fields are concerned
with checking if input event data satisfies specified rules, and returning violating
fragments of data if not. Most notably, DECLARE [6] was the first declarative
approach for business process management. While internally, DECLARE uses
Linear Temporal Logic (LTL), parametrized LTL templates are represented vi-
sually (e.g., as specific types of arrows) to ease usability. An initial constraint
template language, also called DECLARE, is included by default, but custom
template languages can be created and used as well.

In [10], Schöning et al. present an SQL-based approach for discovering declar-
ative process constraints. By creating subqueries for returning activity combina-
tions or computing support and confidence values, the discovery of constraints
that satisfy given thresholds can be implemented as a simple SQL SELECT query.
The authors report generally competitive performance metrics for discovering
constraints. However, expanding the set of discoverable constraints, for example
to ternary instead of only binary constructs, would lead to significant higher
execution times. In [9], the authors extend this approach to also consider data
attributes, resource, and time perspectives. Similarly, in [8], the authors present
a declarative process mining framework based on SQL queries, allowing for dis-
covery and checking of constraints. The authors additionally evaluated the time
required for executing the resulting query sets across different database schemas.

There are also a few object-centric process constraint approaches. OCBC
models, introduced in [2], combine behavioral constraints, inspired by DECLARE
patterns, with object class data models imposing cardinality rules. As such,
OCBC models can express that relationships between objects on the class-level
should also manifest on the behavior-level (e.g., only items belonging to a pur-
chase order should be associated with its pick item events). In [4], the authors



OCPQ: Object-Centric Process Querying & Constraints 5

introduce Object-Centric Constraint Graphs (OCCGs). These constraint graphs
can capture interactions between objects and events, as well as control-flow be-
tween event types, based on a given object type. Additionally, performance met-
rics regarding events can be included.

3 Preliminaries

As preliminaries, we first define some basic mathematical concepts.
For a set X , the powerset of X is P(X ) = {Y | Y ⊆ X }. We also use partial

functions: Given two sets A and B , a partial function f : A ̸→ B maps some of the
elements of A to values in B . For elements x that are not mapped to a value (i.e.,
x ̸∈ dom(f )), we write f (x ) = ⊥. If two partial functions have disjoint domains
(i.e., dom(f )∩dom(g) = ∅), we write f ∪ g for their symmetric union. Moreover,
we use subset notation (i.e., f ⊆ g) if it holds that ∀x∈dom(f ) g(x ) = f (x ).

Next, we define the universes that form the basis of our formalization.

Definition 1. Let UΣ be the universe of strings. We use the following pairwise
disjoint universes:
– Uev ⊆ UΣ Universe of events (e.g., e1)
– Uobj ⊆ UΣ Universe of objects (e.g., o1)
– Uetype ⊆ UΣ Universe of event types ( activities) (e.g., confirm order)
– Uotype ⊆ UΣ Universe of object types (e.g., orders)
– Uattr ⊆ UΣ Universe of attribute names (e.g., time)
– Uqual ⊆ UΣ Universe of relationship qualifiers (e.g., places)
– UobVar ⊆ UΣ Universe of object variable names (e.g., o1)
– UevVar ⊆ UΣ Universe of event variable names (e.g., e1)
– UsetName ⊆ UΣ Universe of set variable names (e.g., A)

We write T for all possible timestamps and durations and Uval for the universe
of all attribute values (with, for instance, T ⊆ Uval and UΣ ⊆ Uval).

Next, we introduce Object-Centric Event Data (OCED) formally. Our defi-
nition is inspired by the OCEL 2.0 specification1, but the presented approach is
not limited to any particular OCED model. At the very core, OCED contains a
set of objects and a set of events, each of which have additional attributes. For
objects, these attributes can also change over time. Certain types of attributes
(e.g., for the object type or relationships between objects) are mandatory.

Definition 2. Object-Centric Event Data (OCED) can be described as a tuple
L = (E ,O , eaval, oaval) of the following components:
– Events E ⊆ Uev as the set of events.
– Objects O ⊆ Uobj as the set of objects.
– Event Attributes eaval : E → (Uattr ̸→ Uval), which provides attribute

values for events. For convenience, we write eavale = eaval(e) for an e ∈ E
as a shorthand. The following properties have to hold for eaval:
• ∀e∈E eavale(activity) ∈ Uetype : each event has exactly one event type.

1 https://www.ocel-standard.org/

https://www.ocel-standard.org/
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• ∀e∈E eavale(objects) ⊆ Uqual × O ∧ eavale(objects) ̸= ∅: each event
has at least one qualified reference to an object.

• ∀e∈E eavale(time) ∈ T: each event has a timestamp.
– Object Attributes oaval : O → (Uattr × T ̸→ Uval), which provides the

attribute values of an object o ∈ O at a concrete timestamp. For convenience,
we write oavalto(attr) = oaval(o)(attr , t) for a given o ∈ O , t ∈ T and
attr ∈ Uattr as a shorthand. The following properties have to hold for oaval:
• For the time-stable attributes a ∈ {objects, type} ⊆ Uattr , the as-

signed value must not change over time. In particular, it should hold
that ∀o∈O ∀t∈T ∀t′∈T oavalto(a) = oavalt

′

o (a). We also write oavalo(a) =
oavalto(a, t) with an arbitrary timestamp t ∈ T for these attributes.

• ∀o∈O oavalo(type) ∈ Uotype : every object has exactly one object type.
• ∀o∈O oavalo(objects) ⊆ Uqual × O: an object can, optionally, contain

qualified references to (other) objects.

As an example OCED, consider L = (E ,O , eaval, oaval) with a set of objects
O = {o1, o2, o3, o4} and a set of events E = {e1, e2, e3, e4, e5, e6}. The attribute
values of all objects and events, assigned by eaval and oaval, are shown in Fig-
ure 3. For oaval, time-stable object attributes are marked with an ∗ in the times-
tamp column. Apart from the mandatory attributes, the following two custom
attributes are present in L: The customer o1 has an attribute city, indicat-
ing the city of residence of the customer. After providing the city initially in
2016, the attribute was updated in 2018, as the customer moved their residence.
Moreover, the payment reminder event e5 has an attribute fee, indicating the
additional fine incurred by the late payment (e.g., 15e).

Object Attribute Timestamp Value
o1 type ∗ customers
o1 objects ∗ {(places, o2)}
o1 city 2016-01-06T14:15 Bonn
o1 city 2018-09-03T10:32 Aachen
o2 type ∗ orders
o2 objects ∗ {(contains, o3), (contains, o4)}
o3 type ∗ items
o4 type ∗ items

pl
ac
es

containsco
nt
ai
ns

(a) oaval with a visualization of the O2O relationships.
Event Attribute Value

e1 activity place order
e1 objects {(customer, o1), (order, o2),

(item, o3), (item, o4)}
e2 activity pack item
e2 objects {(item, o3)}
e3 activity pack item
e3 objects {(item, o4)}
e4 activity ship items
e4 objects {(ships, o3), (ships, o4)}
e5 activity payment reminder
e5 objects {(recipient, o1), (order, o2)}
e5 fee 15
e6 activity pay order
e6 objects {(order, o2)}

place
order

pack
item

pack
item

ship
items

payment
reminder

pay
order

(b) eaval with a visualization of the O2O and E2O relationships.

Fig. 3. Example oaval and eaval tables with corresponding relationship visualizations.
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The graph in Figure 3(a) shows all objects in O as nodes. Edges between
nodes indicate the object-to-object (O2O) relationships, that are formally ex-
pressed through the objects attributes. In the graph of Figure 3(b), events and
event-to-object (E2O) relationships are included additionally. For readability,
the qualifiers for the O2O and E2O relationships are omitted.

For an OCED L = (E ,O , eaval, oaval), we introduce these shorthands:
– EL = E and OL = O for the set of objects or events of L, respectively.
– Function typeL ∈ (O ∪ E ) → (Uotype ∪ Uetype), which assigns object or event

types to objects or events, defined as:

typeL(x ) =

{
oavalx (type), if x ∈ O
eavalx (activity), if x ∈ E

– Function timeL ∈ E → T with timeL(e) = eavale(time), which maps an
event to its timestamp.

– Given an optional qualifier q ∈ Uqual ∪{∗}, we define the function obj qL : (E ∪
O) → P(O), which assigns an event or object to its set of object references:

obj qL (x ) =

{
{o | (q ′, o) ∈ eavalx (objects) ∧ (q = ∗ ∨ q = q ′)}, if x ∈ E
{o | (q ′, o) ∈ oavalx (objects) ∧ (q = ∗ ∨ q = q ′)}, if x ∈ O

For simplicity we also write objL = obj ∗L for all object references without
considering their qualifiers.

4 Object-Centric Querying and Constraints

In this section, we detail our approach to object-centric querying and constraints.
First, we introduce the concept of variable bindings. They make up the output
of our querying approach. A variable binding is a collection of concrete objects
and events of an OCED that are referred to using variable names. Through these
names, events or objects can be differentiated even if they are of the same type.

Definition 3. Let L be an OCED. The set of variable bindings BL under L is:

BL = {b1 ∪ b2 | b1 ∈ (UevVar ̸→ EL) ∧ b2 ∈ (UobVar ̸→ OL)}

Consider an example OCED L with o1, o2, o3 ∈ OL and e1, e2, e3 ∈ EL, and let
o1, o2, o3 ∈ UobVar and e1, e2, e3 ∈ UevVar be object and event variable names.
Then the following example bindings are part of BL: b1 = {}, b2 = {o1 7→ o1},
b3 = {o2 7→ o1}, and b4 = {e1 7→ e1, e2 7→ e3, o1 7→ o1, o3 7→ o3}.

In the context of an OCED, we next introduce the concept of child and
parent bindings. A child binding contains all the event and object variables of
the parent, and also maps them to the same values as the parent.

Definition 4. Let L be an OCED. We define the parent-child relation ⊑L as
follows: For two bindings p, c ∈ BL, p ⊑L c ⇔ ∀x∈dom(p) p(x ) = c(x ). When
p ⊑L c, we call c a child binding of p and p a parent binding of c. Clearly, ⊑L
is a partial order (i.e., reflexive, antisymmetric and transitive).
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For every OCED L, the empty binding {} is the smallest element in BL regarding
⊑L. Considering the previous example bindings, it holds that b2 ⊑L b4 and
b3 ̸⊑L b4. The ⊑L relation is useful for describing the output of nested queries.

Next, we introduce binding predicates. They allow specifying which bindings
a query should return, similar to a WHERE clause in SQL.

Definition 5. Let L be an OCED. Given L, a binding predicate describes a
set of bindings that satisfy this predicate. However, different predicates can be
distinguished even if they induce the same set of satisfied bindings. We write PL
for the set of all binding predicates. If a binding b ∈ BL satisfies a predicate
s ∈ PL, we write b |= s. Additionally, we use the same notation for a set of
predicates S ⊆ PL: b |= S ⇔ ∀s∈S b |= s.

As an example binding predicate for an OCED L, consider s ∈ PL with s |= b ⇔
b(o1) ∈ OL ∧ b(e1) ∈ EL ∧ b(o1) ∈ objL(b(e1)) for all b ∈ BL. The binding
predicate s encompasses all variable bindings where the variables o1 and e1 are
bound to objects or events of L, respectively, such that the values are in an
event-to-object relationship.

One can specify (pairwise disjoint) collections of binding predicates for differ-
ent purposes. Initially, we define the collection BASICL ⊆ PL in the context of
L. Note that our approach is easily extendable by adding more predicate types
and collections. However, for brevity, we do not define further predicates (e.g.,
based on general data attributes, like the price of an orders object) here.

BASICL is made up of three predicate types:
– Event-to-Object For an event variable v ∈ UevVar, an object variable v ′ ∈ UobVar

and an optional relationship qualifier q ∈ Uqual ∪ {∗}: E2O(v , v ′, q) ∈ BASICL,
with for any b ∈ BL:

b |= E2O(v , v ′, q) ⇔ b(v) ∈ EL ∧ b(v ′) ∈ OL ∧ b(v ′) ∈ obj qL(b(v))
– Object-to-Object For two object variables v , v ′ ∈ UobVar, and an optional qual-

ifier q ∈ Uqual ∪ {∗}: O2O(v , v ′, q) ∈ BASICL, with for any b ∈ BL:
b |= O2O(v , v ′, q) ⇔ b(v) ∈ OL ∧ b(v ′) ∈ OL ∧ b(v ′) ∈ obj qL(b(v))

– Time Between Events For two event variables v , v ′ ∈ UevVar and a duration
interval tmin , tmax ∈ T: TBE(v , v ′, tmin , tmax ) ∈ BASICL, with for any b ∈ BL:

b |= TBE(v , v ′, tmin , tmax ) ⇔ b(v) ∈ EL ∧ b(v ′) ∈ EL

∧ tmin ≤ timeL(b(v ′))− timeL(b(v)) ≤ tmax

Consider the predicate s1 = O2O(o1, o2, ∗) ∈ BASICL and the bindings b5 =
{o1 7→ o1}, and b6 = {o1 7→ o1, o2 7→ o2, e1 7→ e1}. As b5 does not assign o2,
it holds that b5 ̸|= s1. Assuming an object-to-object relation between o1 and o2
exists in L, b6 |= s1 would hold.

Next, we introduce the concept of binding boxes, which correspond to simple
queries, yielding sets of variable bindings as output.

Definition 6. Let L be an OCED. A binding box bL = (Var,Pred) over L is a
tuple consisting of:
– Var ∈ {ev ∪ ob | ev ∈ UevVar ̸→ P(Uetype) ∧ ob ∈ UobVar ̸→ P(Uotype)}, a par-

tial function which specifies to values of which event or object types selected
variables should be bound.
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– Pred ⊆ PL, a set of binding predicates.
Intuitively, bL binds the variable names dom(Var) to all combination of values
(i.e., events or objects of L) such that they are of the specified types and the
predicate set S holds. For convenience, we sometimes write Var(bL) = Var and
Pred(bL) = Pred. Additionally, we write BOXL for the set of all binding boxes
under L. We define when a binding b ∈ BL satisfies the binding box, written as
b |= bL, as follows:

b |= bL ⇐⇒ b |= Pred ∧ dom(b) = dom(Var)

∧ ∀v∈dom(Var)

(
b(v) ∈ EL ∪ OL ∧ typeL(b(v)) ∈ Var(v)

)
Next, we present a simple example binding box involving one event variable
and one object variable. For this and further examples, consider an OCED L =
(E ,O , eaval, oaval) of an order management process that is not fully specified
here for brevity. Consider the simple binding box aL = (Var,Pred), with:
– Var = {e1 7→ {place order, confirm order}, o1 7→ {orders}}
– Pred = {O2E(e1, o2, order)}

For convenience, we will use a visual notation schema for further examples: Given
a binding box aL = (Var,Pred), the elements of Var are split into multiple lines
on the top. On the bottom (i.e., in the predicate; below the line), the filter
predicates Pred are listed using their representation (e.g., E2O).

aL
o1 : Object(orders)
e1 : Event(place order, confirm order)

E2O(e1, o1, order)

Given this example binding box aL, we can also construct its output set.
Assume that L contains only the objects o1, o2, o3 of type orders, where o1 and
o2 are associated with a place order event (i.e., with e1 and e2, respectively).
Additionally, assume that o1 is the only object that is also associated with a
confirm order event e3. Then we can construct the output bindings of aL,
{b ∈ BL | b |= aL}, as: outL(aL) =

{
{o1 7→ o1, e1 7→ e1}, {o1 7→ o2, e1 7→

e2}, {o1 7→ o1, e1 7→ e3}
}
.

To facilitate nested queries, we define a relation ⪯L between binding boxes
over an OCED L. It encompasses the concept of refined binding boxes, where
new object or event variables can be introduced, and the filter is at least as strict
as before.

Definition 7. Let L be an OCED. Let aL, bL ∈ BOXL. We say aL ⪯L bL holds
if: Var(aL) ⊆ Var(bL) and Pred(aL) ⊆ Pred(bL).

For instance, with aL from before and bL = ({o1 → {orders}}, ∅), it holds that
bL ⪯L aL. The concept of refined binding boxes enables nested queries, where
the first binding box only queries a subset of the overall involved objects or
events (e.g., only an orders object but no events).

Next, we define the restriction of binding boxes on only a subset of considered
predicates. They enable ignoring certain predicate types for the ⪯L relation.



10 A. Küsters and W.M.P. van der Aalst

Definition 8. Let L be an OCED, let a = (Var,Pred) ∈ BOXL be a binding
box over L and let X ⊆ PL be a set of binding predicates. The filter-restriction
of a to X , denoted as a|X , is the binding box a|X = (Var,Pred ∩ X ) over L.

These concepts allow defining a tree structure of binding boxes, where children
are refined versions of their parents when considering only basic predicates. These
query trees are the core of our approach and enable declarative, nested querying
of objects and events.

Definition 9. Let L be an OCED. A query tree is a tuple T = (V ,F , r , l , box ):
– V is a finite set of nodes.
– r ∈ V is the designated root node (i.e., the only node with no parent).
– F ⊆ V × V is a set of edges between nodes, such that in the directed graph

(V ,F ) there is exactly one path from the root r to a for all a ∈ V .
– l : F → UsetName is an injective function, assigning unique names to edges.
– box : V → BOXL is a function which maps each node in V to a binding box

over L, such that for all edges (a, b) ∈ F with box (a) = a and box (b) = b, it
holds that a|BASICL ⪯L b|BASICL .

Next, in Figure 4, we show an example query tree only using predicates
from BASICL. Afterwards, we introduce more complex queries and constraint
examples which motivate the specified restriction of the box function.

box(v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, ∗)

box(v1)
o1 : Object(orders)
e1 : Event(confirm order)
e2 : Event(pay order)

E2O(e1, o1, ∗)
E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

box(v2)
o1 : Object(orders)
e1 : Event(confirm order)
e2 : Event(payment reminder)

E2O(e1, o1, ∗)
E2O(e2, o1, ∗)

v0

v1 v2

A B

o1 e1
o1 e1
o2 e2
o3 e3
o4 e4

o1 e1 e2
o3 e3 e7
o3 e3 e8

o1 e1 e2
o1 e1 e5
o2 e2 e6
o3 e3 e9

∆box(v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

∆box(v2)
e2 : Event(payment reminder)

E2O(e2, o1, ∗)

Fig. 4. A query tree with three nodes. On the left, the binding box of each node is
shown. On the top right, the tree structure is visualized with example output tables.
The boxes on the bottom right, marked with ∆, only show additions to their parents.
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In Figure 4, the query tree T1 = (V ,F , r , l , box )L is shown, with V =
{v0, v1, v2}, r = v0, F = {(v0, v1), (v0, v2)}, l((v0, v1)) = A, and l((v0, v2)) = B.
The top right of Figure 4 shows the graph of T1 with exemplary output bind-
ing tables, while box is presented on the left. Naturally, the child binding boxes
contain many duplicates (shown in gray). To ease readability, we omit variables
and predicates that are already present in the binding box of the parent node in
future examples. With these omissions (marked using ∆), box (v1) and box (v2)
can be presented more compactly, as shown on the bottom right.

On the top right of Figure 4, we show exemplary output sets of box (v0),
box (v1), and box (v2) as tables next to the corresponding nodes. The rows for
v0 are colored in four different colors. For v1 and v2, each output row is colored
based on ⊑L, indicating from which parent binding in the output set of v0 the
row is derived. The first two output binding rows for v0 (in cyan and magenta)
have exactly one child binding in the output set of v1 and none in the output
set of v2. For the third output binding row of v0 (in green), one child binding in
v1 exists, and there are also two child bindings in the output set of v2. The last
output row of v0 (in orange) has no child binding in the output sets of v1 or v2.

In a nested query, oftentimes, the result of the inner query is used in the outer
query in an aggregated way. For instance, in a query for all customers with more
than 100 orders, the outer query (all customers) uses the result count of the
inner query (all orders by the customer) as its filter. To express such queries,
we introduce a new set of binding predicates, CHILD SETT

u , in the context
of a query tree T = (V ,F , r , l , box ) and one of its nodes u ∈ V . For every
child node v ∈ V with (u, v) ∈ F and l((u, v)) = A, predicates of the form
CBS(A,nmin ,nmax ) with nmin ,nmax ∈ N0 are available in CHILD SETT

u .
They are fulfilled for a binding b ∈ BL, when the set of child bindings of b
in v , S = {x ∈ BL | x |= box (v) ∧ b ⊑L x}, is in the specified size range
(i.e., nmin ≤ |S | ≤ nmax ). Note, that these predicates can be recursive, as the
predicates of a child node are already considered when evaluating the predicates
of the parent node. In particular, they are also only well-defined for the binding
box of a specified node, which is why they are not considered for the ⪯L relation
in the tree, which only considers the predicates in BASICL.

Figure 5 shows such an extended version of the previous tree example.

box (v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, ∗)
CBS(A, 0, 0) // ∈ CHILD SETT2v0

CBS(B, 0, 0) // ∈ CHILD SETT2v0

v0

v1 v2

A B

o1 e1
o1 e1
o2 e2
o3 e3
o4 e4

o1 e1 e2
o3 e3 e7
o3 e3 e8

o1 e1 e2
o1 e1 e5
o2 e2 e6
o3 e3 e9

Fig. 5. An extension of the query tree from Figure 4 with child filter predicates (CBS).
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Figure 5 shows a new query tree T2 = (V ,F , r , l , box ), with V = {v0, v1, v2},
r = v0, and F = {(v0, v1), (v0, v2)}. While v1 and v2 are the same as in Fig-
ure 4, the root node box (v0) now contains two additional predicates of type
CHILD SETT

v0 . T2 queries placed orders that were not paid fast (i.e., within
4 weeks after confirmation) and for which also no payment reminder was sent.
Again, we annotate example output tables for each node in the tree on the right
of Figure 5. If bindings are removed only by a child set predicate of a binding
box but fulfill the basic predicates of it (i.e., BASICL), we indicate this by in-
cluding this binding with a strikethrough. Generally, children of the node might
still contain child bindings for crossed out parent binding rows (e.g., all rows
for v1 and v2 in Figure 5); however, in practice, they are often not of particular
interest and thus sometimes ignored or omitted from the result tables.

Next, we want to outline how the presented querying approach can be ex-
tended. In general, the output tables of the query tree nodes can be augmented
and filtered freely. As augmentation, labels for each output row can be com-
puted and added as columns (e.g., the total order volume of a customer). In
the following, we will describe how constraints can be implemented. At its core,
constraints are a special case of such general labels, defining for each output row
if it should be considered satisfied or violated. As this classification is binary, a
set of predicates for each node can be used for specifying the violation criteria.
For a tree node v ∈ V , we write constr(v) ⊆ PL for its set of constraint predi-
cates. Fully defining these additions formally is outside the scope of this paper.
However, in the following, we present a short example as a demonstration: Con-
sider the query tree constraint C = ((V ,F , r , l , box ), constr) shown in Figure 6,
with V = {v0, v1}, r = v0 and F = {(v0, v1)}. The graph (V ,F ) with the edge
labels l is shown on the right, while box with constr is presented on the left.

box(v0) with constr(v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, ∗)

CBS(A, 1, 1) // ∈ constr(v0)

∆box(v1) with constr(v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

v0

v1

A

o1 e1 Satisfied
o1 e1 ✓
o2 e2 ✓
o3 e3 ×
o4 e4 ×
o1 e1 e2
o1 e1 e7
o2 e2 e8
o3 e3 e9
o3 e3 e10

Fig. 6. Example constraint specifying that every confirmed order should be paid within
4 weeks after the confirmation exactly once. For each v ∈ V , the set constr(v) is shown
in the corresponding binding box below an extra line. In the example output tables
shown on the right, this constraint is satisfied for all binding rows of box (v0) except
the last two rows. The violation status of an output binding of box (v0) is annotated to
the corresponding output row as either ✓ or ×.
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5 Implementation

We implemented the querying and constraint checking approach introduced in
Section 4 as the full-stack application OCPQ consisting of two parts: (1) A high-
performance execution engine backend implemented in Rust and (2) an interac-
tive user-friendly query editor frontend written in Typescript. The tool is pub-
licly available at https://github.com/aarkue/OCPQ, and there are installers as
well as further resources and guides available at https://ocpq.aarkue.eu.

Describing the implementation, and all its features, in detail is outside the
scope of this paper. However, we briefly mention some key aspects:
Importing & Pre-processing: All file types of the OCEL 2.0 specification can
be imported. The OCEDs are then pre-processed to enable fast query execution.
Representation of Bindings: Variable bindings are represented in a memory-
efficient way, encoding the variable name and its value only through an 8-byte
integer each. This enables faster execution times and usage for larger datasets.
Parallelized Recursive Query Execution Algorithm: Queries are executed
by a recursive algorithm that allows for full parallelization between bindings.
HPC Deployment: To leverage this parallelization, the tool allows users to
easily deploy query execution on a High-Performance Computing (HPC) cluster.
Intelligent Binding Order: New variables are bound in an efficient order,
applying predicate filters as early as possible to remove unwanted bindings.

A screenshot of the tool is shown in Figure 7. The frontend editor visualizes
query trees similar to the notation style that is used throughout this paper.

Fig. 7. Screenshot of the implemented OCPQ tool. The two shown trees correspond to
the examples in this paper (i.e., Figure 6 on the left, and Figure 5 on the right). The
root node of the left tree is colored according to the percentage of violations (9.55%)
and its output binding results are shown in the table on the left.

https://github.com/aarkue/OCPQ
https://ocpq.aarkue.eu
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6 Evaluation

For evaluation, we created seven queries and constraints for a real-life OCED
dataset of a loan application process. The OCED was derived from the BPI
Challenge 2017 log [11], and has more than 1,200,000 events and 100,000 objects.

The seven example queries (Q1 – Q7) are designed to be of real-life relevancy
and cover a large variety of concepts, ranging from simple to more complex.
In the following, we briefly introduce the used queries, first categorizing their
concept or type and then describing the concrete query in natural language:
Q1 A simple constraint on the number of events that should be associated with an object: “Every

application should be submitted exactly once.”
Q2 A basic eventually-follows constraint (under a specified object type): “Every Offer should be

returned at least once after creation.”
Q3 A constraint on the number of objects of a type to be associated with events: “Each O Returned

event should involve exactly one Offer.”
Q4 An eventually-follows constraint spanning across events of two related objects: “After an Appli-

cation was accepted, there should be at least one associated Offer accepted afterwards.”
Q5 A constraint enforcing that an object is associated with an event if it was involved with an-

other event: “The Resource that accepts an Application should also create all Offers for that
Application.”

Q6 A query for the maximal duration between two events, both associated with an object: “What
is the maximum delay between an Offer being created and accepted?”

Q7 A query for multiple object and event instances of the same type that are linked through another
object: “Get all combinations of two Offers that are associated with the same Application and
the corresponding Offer creation events.”

As qualitative evaluation, to investigate expressiveness, we analyzed for each
query whether it (or an equivalent constraint) can be modeled in DECLARE2 [6],
OCCG [4], or OCBC [2]. As the implementations of these approaches are pri-
marily research prototypes, and are either very slow or completely unusable for
larger datasets, we did not measure their execution times. Instead, as quantita-
tive evaluation, we compared the query execution duration of OCPQ to the gen-
eral querying platforms Neo4j (used in [3]), SQLite (one of the official OCEL 2.0
formats), and the performance-focused DuckDB [7], to demonstrate the runtime
performance and scalability of OCPQ.

Figure 8 shows how Q4 has been formulated in OCPQ, SQL (for SQLite
and DuckDB), and Cypher (for Neo4j), as an example. While evaluating the
usability of OCPQ in detail is outside the scope of this paper, this example still
demonstrates the complexity of implementing simple business queries in general
querying languages, like SQL or Cypher.

For SQLite, the OCEL 2.0 database was completely loaded into memory, to
be a more accurate comparison to OCPQ, and it was ensured that appropriate
table indices were added. For Neo4j, the database dump3 from [3], was imported
in a compatible version of Neo4j (3.5.35) and additionally Neo4j was configured
to allow extensive memory usage. To measure accurate execution times for Neo4j,
we used query formulations that report either the total count of results (for
queries) or violations (for constraints). This was done to exclude misleading
execution times for when the result rows are being streamed instead of fully
computed. Moreover, these numbers are also always calculated in OCPQ.

2 As DECLARE is based on traditional, flat event data, we assumed a reasonable flat
representation of the OCED on only one object type for evaluating its expressiveness.

3 See https://data.4tu.nl/datasets/5c9717a0-4c22-4b78-a3ad-d2234208bfd7/1.

https://data.4tu.nl/datasets/5c9717a0-4c22-4b78-a3ad-d2234208bfd7/1
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A

Object Variables
 o1: Application

Event Variables
 e1: A_Accepted

Filters
 e1  o1

Constraints
|A|  1

31509

45.32%
14281

Object Variables
 o2: Offer

Event Variables
 e2: O_Accepted

Filters
 o1  o2
 e2  o2
 e1  e2 0 - ∞

Constraints

17228

(a) Q4 in OCPQ

WITH

AcceptedOffers AS (

SELECT DISTINCT

O2O.ocel_source_id,

E2.ocel_id,

E2.ocel_time

FROM

object_object AS O2O

INNER JOIN object_Offer AS A2 ON O2O.ocel_target_id = A2.ocel_id

INNER JOIN event_object AS E2O2 ON E2O2.ocel_object_id = A2.ocel_id

INNER JOIN event_O_Accepted AS E2 ON E2O2.ocel_event_id = E2.ocel_id

)

SELECT

A1.ocel_id,

E1.ocel_id,

(

SELECT

COUNT(*)

FROM

AcceptedOffers AS AO

WHERE

AO.ocel_source_id = A1.ocel_id

AND AO.ocel_source_id = A1.ocel_id

AND E1.ocel_time <= AO.ocel_time

) >= 1 AS satisfied

FROM

object_Application AS A1

INNER JOIN event_object AS E2O ON E2O.ocel_object_id = A1.ocel_id

INNER JOIN event_A_Accepted AS E1 ON E2O.ocel_event_id = E1.ocel_id;

(b) Q4 in SQL

MATCH (o1:Entity { EntityType: "Application" }) <-[:CORR]- (e1:Event {Activity:

"A_Accepted"})↪→
OPTIONAL MATCH (e2:Event { Activity: "O_Accepted" }) -[:CORR]-> (o2:Entity {EntityType:

"Offer"}) -[:REL]-> (o1)↪→
WHERE e1.timestamp <= e2.timestamp

WITH o1, COUNT(e2) AS e2_c, COUNT(o2) AS o2_c

WHERE e2_c < 1 OR o2_c < 1

RETURN COUNT(o1) AS violationCount

(c) Q4 in Cypher (violation count only)

Fig. 8. Constraint Q4 formulated in OCPQ, SQL, and Cypher.

We used the full current implementation for formulating the example queries
using OCPQ, also including features that were only briefly mentioned in this pa-
per. All queries except Q6 are modeled fully visually and without programming
in OCPQ. For Q6, a scripting feature of the tool is used to calculate the maximum
duration of subquery results as a label. More details on the evaluation, including
the dataset, raw execution times, and formulations of the queries across all ap-
plicable approaches are available at https://github.com/aarkue/ocpq-eval.

The combined results for both evaluations are shown in Figure 9. The re-
sults show two things very clearly: First, there is a large gap in expressiveness,
resulting in many relevant queries and constraints that are not representable in
previously proposed visual approaches, like DECLARE, OCCG, or OCBC. In
particular, the queries Q5 – Q7 cannot be modeled in any of them. Second, also
general-purpose querying solutions, like SQLite or Neo4j, are not well suited for
important types of OCED queries and are significantly slower than OCPQ for
all tested queries. While DuckDB performs similar to OCPQ in terms of execu-
tion times, SQL formulations of OCED queries quickly grow complex and are
difficult to write, read, and interpret. Moreover, a simple SQL translation also

https://github.com/aarkue/ocpq-eval
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Fig. 9. Combined qualitative and quantitative evaluation of OCPQ. For the first three
approaches, we only specify if the query/constraint can be expressed or not. For Neo4j,
SQLite, DuckDB, and OCPQ, all queries are expressible, and we report their mean
execution time across ten runs on the BPIC2017 OCED. Evaluating Q6 in SQLite
took longer than four minutes and is thus omitted.

does not yield any subquery results, unlike OCPQ where results are available
for each subquery.

Of course, there are some limitations to our evaluation. As we created the
queries Q1 – Q7 ourselves, they might exhibit certain biases. However, they still
serve as typical examples with real-world relevancy and cover a wide range of con-
structs. Also, while we spent special attention to crafting well-performing queries
for both SQLite and Neo4j, even more efficient formulations might be possible.
Finally, we performed our evaluation only on one real-life OCED dataset.

7 Conclusion

In this paper, we proposed an object-centric querying and constraint approach,
OCPQ, based on variable bindings of objects and events. Through the use of
bindings, it can express more advanced queries and constraints than previous
graphical approaches. We implemented our approach as a full-stack solution,
supporting efficient execution of queries and constraints, as well as an inter-
active editor for creating them. As evaluation, we constructed several example
queries and constraints and compared OCPQ to other approaches. The evalua-
tion demonstrated the limitations of previous work in terms of expressiveness,
and showed that OCPQ also significantly outperforms several general querying
solutions, namely SQLite and Neo4j, in terms of runtime.

In future work, we plan to conduct a detailed performance analysis on more
datasets. Additionally, the expressiveness of the proposed approach has to be
studied systematically and in more depth. Furthermore, we see a lot of potential
for extensions. Our concept of object-centric querying is very universal, allowing
applications for process constraints, OCED filtering, general annotations, as well
as for generating situation tables as input for machine learning techniques.
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